TI推出TMS320C66x DSP系列的最新数字信号处理器TMS320C6671

2023-04-20 05:30   426   0  

日前,德州仪器 (TI) 宣布推出 TMS320C66x DSP 系列的最新数字信号处理器 (DSP) TMS320C6671,以及 TMS320C6670 无线电片上系统 (SoC) 的增强技术,进一步刷新多内核应用的性能与创新。业界速度最快、性能最高的定点与浮点单内核器件 C6671 DSP 建立在 TI KeyStone 多核架构基础之上,可为开发人员轻松进入多核世界提供一个出色选择。同时,与以通信为中心应用的现有 SoC 解决方案相比,TI 增强型 C6670 无线电 SoC 可实现提高一倍的性能功耗比。



TI 多核及媒体基础架构DSP业务部全球业务经理 Ramesh Kumar 指出:“TI 在比同类竞争解决方案更短的时间内推出更高性能的解决方案,将多核技术推向新高。对于习惯采用单核器件进行设计而又想体验多核性能的高性能应用开发人员而言,我们的 C6671 DSP 不愧为进军多核领域的最佳敲门砖。而对于希望在以通信为中心的应用中获得更高性能的开发人员而言,C6670 无线电 SoC 则可提供无可比拟的增强性能。”



TI C6671 DSP 帮助您轻松进入多内核应用


TI C6671 DSP 是 C66x DSP 系列旗下首款 1.25 GHz 单核产品,其采用战略设计方法帮助开发人员在无需具备相应技术经验的条件下熟悉多核器件。采用 C6671 DSP 进行设计的客户将受益于 TI 突破性多核特性,包括高性能、每个核更多外设数量与更大存储器容量,以及单个器件上的定点与浮点性能等。



利用 TI C6671 DSP,开发人员不但可测试多内核产品是否能满足其需求,而且还可探索将其设计方案移植到 TI C66x DSP 产品系列中其它处理器的选项,以充分满足今后更高性能的需求。通过在整个 TI TMS320C6672、TMS320C6674 以及 TMS320C6678 多核 DSP 中提供引脚与软件兼容型平台,客户可更便捷地设计集成型低功耗的低成本产品,充分满足各种高性能市场的需求,如任务关键型、公共安全与防卫、医疗与高端影像、测试与自动化、高性能计算以及核心网络等。



TI C6670 无线电 SoC 可实现以通信为中心的应用


TI 增强型 C6670 无线电 SoC 是一款 1.2 GHz 4 核器件,可为软件定义无线电 (SDR)、公共安全以及新兴宽带无线电系统等以通信为中心的应用提供改进型加速器。C6670 无线电 SoC 新增的增强技术包括最新多标准比特率协处理器 (BCP) 以及其它协处理器,不但可加速 LTE、WCDMA、TD-SCDMA 以及 WiMAX 的物理层处理,而且还可通过低时延大幅提升系统容量与性能。此外,具有良好平衡性的可编程 CPU 内核与可配置加速器可在简化编程模式下进行软件定义无线电 (SDR)的工作。同时,改进型加速器可帮助开发人员开发以通信为中心的工业多标准解决方案。



近日,TI 还宣布对多内核软件与工具进行了大规模升级,其中包括免费多内核软件开发套件 (MCSDK)、Linux 软件、优化库以及 OpenMP 编程模型支持等。TI 软件产品不但可帮助开发人员简化多内核解决方案移植,而且还可帮助制造商以比同类竞争解决方案更短的时间开发出成本与功耗更低的更广泛系列的解决方案。   


供货情况


TI提供简单易用的低功耗评估板 (EVM) 帮助开发人员快速启动采用 C6670、C6671、C6672、C6674 或 C6678 DSP 的设计。TMDXEVM6670L 与 TMDXEVM6678L 均包含免费 MCSDK、Code Composer Studio™ (CCS) 集成开发环境 (IDE) 以及应用/演示代码套件,可帮助编程人员快速体验最新 C66x DSP 的高速度。C6671 DSP、C6670 无线电 SoC 以及 EVM 现已开始公开接收订单。



TI KeyStone 多内核架构

TI KeyStone 多内核架构是真正的多核创新平台,可为开发人员提供一系列稳健的高性能、低功耗多核器件。Keystone 架构可实现具有革命性突破的高性能,是 TI 最新开发的 TMS320C66x DSP 系列的基础。KeyStone 与其它多核架构的不同之处在于:它能够为多核器件中的每一个内核发挥全面的处理功能。基于 KeyStone 的器件针对高性能市场进行了优化,可充分满足
无线基站、任务关键型、测试与自动化、医疗影像以及高端计算等应用的需求。

登录icspec成功后,会自动跳转查看全文
博客评论
还没有人评论,赶紧抢个沙发~
发表评论
说明:请文明发言,共建和谐网络,您的个人信息不会被公开显示。